Robustness to Adversarial Attacks in Learning-Enabled Controllers Xiong, Z. ., Eappen, J. ., Zhu, H. ., & Jagannathan, S. . (2020). Robustness to Adversarial Attacks in Learning-Enabled Controllers. ArXiv E-Prints, arXiv:2006.06861. (Original work published 2024)
GPU Accelerated Sub-Sampled Newton's Method Kylasa, S. ., Roosta-Khorasani, F. ., Mahoney, M. ., & Grama, A. . (2018). GPU Accelerated Sub-Sampled Newton’s Method. ArXiv E-Prints, arXiv:1802.09113. (Original work published 2024)
Simplifying Neural Networks using Formal Verification Gokulanathan, S. ., Feldsher, A. ., Malca, A. ., Barrett, C. ., & Katz, G. . (2019). Simplifying Neural Networks using Formal Verification. ArXiv E-Prints, arXiv:1910.12396. (Original work published 2024)
An SMT-Based Approach for Verifying Binarized Neural Networks Amir, G. ., Wu, H. ., Barrett, C. ., & Katz, G. . (2020). An SMT-Based Approach for Verifying Binarized Neural Networks. ArXiv E-Prints, arXiv:2011.02948.
Parallelization Techniques for Verifying Neural Networks Wu, H. ., Ozdemir, A. ., c, A. ., Irfan, A. ., Julian, K. ., Gopinath, D. ., … Barrett, C. . (2020). Parallelization Techniques for Verifying Neural Networks. ArXiv E-Prints, arXiv:2004.08440. (Original work published 2024)