Assured Autonomy Tools Portal
Continual Assurance of Learning-Enabled, Cyber-Physical Systems (LE-CPS)

Safety Verification of Cyber-Physical Systems with Reinforcement Learning Control


This paper proposes a new forward reachability analysis approach to verify safety of cyber-physical systems (CPS) with reinforcement learning controllers. The foundation of our approach lies on two efficient, exact and over-approximate reachability algorithms for neural network control systems using star sets, which is an efficient representation of polyhedra. Using these algorithms, we determine the initial conditions for which a safety-critical system with a neural network controller is safe by incrementally searching a critical initial condition where the safety of the system cannot be established. Our approach produces tight over-approximation error and it is computationally efficient, which allows the application to practical CPS with learning enable components (LECs). We implement our approach in NNV, a recent verification tool for neural networks and neural network control systems, and evaluate its advantages and applicability by verifying safety of a practical Advanced Emergency Braking System (AEBS) with a reinforcement learning (RL) controller trained using the deep deterministic policy gradient (DDPG) method. The experimental results show that our new reachability algorithms are much less conservative than existing polyhedra-based approaches. We successfully determine the entire region of the initial conditions of the AEBS with the RL controller such that the safety of the system is guaranteed, while a polyhedra-based approach cannot prove the safety properties of the system.

Year of Publication
Conference Name
The International Conference on Embedded Software (EMSOFT)
Conference Location
New York, New York, USA